|

Die GestaltMatcher-Datenbank ist ein Dienst der Arbeitsgemeinschaft für Genom-Diagnostik (AGD), einer eingetragenen gemeinnützigen Organisation in Deutschland. Die GMDB zielt darauf ab, die Offenheit und Zugänglichkeit wissenschaftlicher Ergebnisse zu verbessern und ebenso di Zusammenarbeit zwischen Forschern und Klinikern zu verbessern. Die GMDB ist eine gemeinnützige Gemeinschaftsressource und ist nicht an einen bestimmten Verlag oder eine Zeitschrift gebunden.

Wir bitten Sie höflich, bei jeder Verwendung von Daten, die aus dem Browser der GestaltMatcher Datenbank stammen, den GestaltMatcher zu zitieren. Ihr primäres Dokument und jeder online Bezug, welche unsere Daten enthält, sollte einen Hinweis bzw. Link zur GMDB enthalten. Es ist nicht nötig uns als Autoren in Ihr Manuskript aufzunehmen, es sei denn, wir haben spezifische Ratschläge oder Analysen für Ihre Arbeit beigetragen.

GestaltMatcher zitieren

Wenn Sie unsere Datenbank nutzen und unsere Arbeit zitieren möchten, zitieren Sie bitte unseren Artikel und die GestaltMacher-Datenbank:

GestaltMatcher
Hsieh, TC., Bar-Haim, A., Moosa, S. et al. GestaltMatcher facilitates rare disease matching using facial phenotype descriptors. Nat Genet (2022). https://doi.org/10.1038/s41588-021-01010-x (PDF)

GestaltMatcher Datenbank
Lesmann, H. et al. GestaltMatcher Database - a FAIR database for medical imaging data of rare disorders. medRxiv (2023) https://doi.org/10.1101/2023.06.06.23290887

Publikationen mit Bezug zur GestaltMatcher Datenbank (46)

    2024
  1. Huang, Y., Sun, H., Chen, Q., Shen, J., Han, J., Shan, S., & Wang, S. (2024). Computer-based facial recognition as an assisting diagnostic tool to identify children with Noonan syndrome. BMC Pediatrics, 24(1), 361. https://doi.org/10.1186/s12887-024-04827-7

  2. Thompson, M. D., & Knaus, A. (2024). Rare Genetic Developmental Disabilities: Mabry Syndrome (MIM 239300) Index Cases and Glycophosphatidylinositol (GPI) Disorders. Genes, 15(5). https://doi.org/10.3390/genes15050619

  3. do Olmo, J., Logroño, J., Mascías, C., Martínez, M., & Isla, J. (2024). Assessing DxGPT: Diagnosing rare diseases with various large language models. bioRxiv. https://doi.org/10.1101/2024.05.08.24307062

  4. Lemke, J. R., Brandt, C., & Krawitz, P. (2024). Michael’s missed genetic diagnosis. Epileptology. https://doi.org/10.1007/s10309-024-00674-9

  5. Wu, D., Yang, J., Liu, C., Hsieh, T.-C., Marchi, E., Blair, J., Krawitz, P., Weng, C., Chung, W., Lyon, G. J., Krantz, I. D., Kalish, J. M., & Wang, K. (2024). GestaltMML: Enhancing rare genetic disease diagnosis through multimodal machine learning combining facial images and clinical texts. ArXiv. https://europepmc.org/article/med/38711434

  6. Cox, E. G. M., van Bussel, B. C. T., Campillo Llamazares, N., Sels, J.-W. E. M., Onrust, M., van der Horst, I. C. C., Koeze, J., & SICS Study Group. (2024). Facial appearance associates with longitudinal multi-organ failure: an ICU cohort study. Critical Care / the Society of Critical Care Medicine, 28(1), 106. https://doi.org/10.1186/s13054-024-04891-6

  7. Yang, X., Li, R., Yang, X., Zhou, Y., Liu, Y., & Han, J.-D. J. (2024). Coordinate-wise monotonic transformations enable privacy-preserving age estimation with 3D face point cloud. Science China. Life Sciences. https://doi.org/10.1007/s11427-023-2518-8

  8. Schwartzmann, S., Zhao, M., Sczakiel, H. L., Hildebrand, G., Ehmke, N., Horn, D., Mensah, M. A., & Boschann, F. (2024). RNA analysis and computer-aided facial phenotyping help to classify a novel TRIO splice site variant. American Journal of Medical Genetics. Part A, e63599. https://doi.org/10.1002/ajmg.a.63599

  9. Reiter, A. M. V., Pantel, J. T., Danyel, M., Horn, D., Ott, C.-E., & Mensah, M. A. (2024). Validation of 3 Computer-Aided Facial Phenotyping Tools (DeepGestalt, GestaltMatcher, and D-Score): Comparative Diagnostic Accuracy Study. Journal of Medical Internet Research, 26, e42904. https://doi.org/10.2196/42904

  10. Waikel, R. L., Othman, A. A., Patel, T., Ledgister Hanchard, S., Hu, P., Tekendo-Ngongang, C., Duong, D., & Solomon, B. D. (2024). Recognition of Genetic Conditions After Learning With Images Created Using Generative Artificial Intelligence. JAMA Network Open, 7(3), e242609. https://doi.org/10.1001/jamanetworkopen.2024.2609

  11. Duong, D., Johny, A. R., Ledgister Hanchard, S., Fortney, C., Flaharty, K., Hellmann, F., Hu, P., Javanmardi, B., Moosa, S., Patel, T., Persky, S., Sümer, Ö., Tekendo-Ngongang, C., Lesmann, H., Hsieh, T.-C., Waikel, R. L., André, E., Krawitz, P., & Solomon, B. D. (2024). Comparison of clinical geneticist and computer visual attention in assessing genetic conditions. PLoS Genetics, 20(2), e1011168. https://doi.org/10.1371/journal.pgen.1011168

  12. Laugwitz, L., Cheng, F., Collins, S. C., Hustinx, A., Navarro, N., Welsch, S., Cox, H., Hsieh, T.-C., Vijayananth, A., Buchert, R., Bender, B., Efthymiou, S., Murphy, D., Zafar, F., Rana, N., Grasshoff, U., Falb, R. J., Grimmel, M., Seibt, A., … Haack, T. B. (2024). ZSCAN10 deficiency causes a neurodevelopmental disorder with characteristic oto-facial malformations. Brain: A Journal of Neurology. https://doi.org/10.1093/brain/awae058

  13. Arlt, A., Knaus, A., Hsieh, T.-C., Klinkhammer, H., Bhasin, M. A., Hustinx, A., Moosa, S., Krawitz, P., & Ekure, E. (2024). Next-generation phenotyping in Nigerian children with Cornelia de Lange syndrome. American Journal of Medical Genetics. Part A, e63641.https://doi.org/10.1002/ajmg.a.63641

  14. Napolitano, G., Has, C., Schwerk, A., Yuan, J.-H., & Ullrich, C. (2024). Potential of Artificial Intelligence to Accelerate Drug Development for Rare Diseases. Pharmaceutical Medicine, 38(2), 79–86. https://doi.org/10.1007/s40290-023-00504-9

  15. Rigter, P. M. F., de Konink, C., Dunn, M. J., Proietti Onori, M., Humberson, J. B., Thomas, M., Barnes, C., Prada, C. E., Weaver, K. N., Ryan, T. D., Caluseriu, O., Conway, J., Calamaro, E., Fong, C.-T., Wuyts, W., Meuwissen, M., Hordijk, E., Jonkers, C. N., Anderson, L., … van Woerden, G. M. (2024). Role of CAMK2D in neurodevelopment and associated conditions. American Journal of Human Genetics. https://doi.org/10.1016/j.ajhg.2023.12.016

  16. Küry, S., Stanton, J. E., van Woerden, G., Hsieh, T.-C., Rosenfelt, C., Scott-Boyer, M. P., Most, V., Wang, T., Papendorf, J. J., de Konink, C., Deb, W., Vignard, V., Studencka-Turski, M., Besnard, T., Hajdukowicz, A. M., Thiel, F., Möller, S., Florenceau, L., Cuinat, S., … Krüger, E. (2024). Unveiling the crucial neuronal role of the proteasomal ATPase subunit gene PSMC5 in neurodevelopmental proteasomopathies. medRxiv https://doi.org/10.1101/2024.01.13.24301174

  17. Sellin, J., Pantel, J. T., Börsch, N., Conrad, R., & Mücke, M. (2024). Kurze Wege zur Diagnose mit künstlicher Intelligenz – systematische Literaturrecherche zu „diagnostic decision support systems“ Der Schmerz, 38(1), 19–27. https://doi.org/10.1007/s00482-023-00777-8

  18. Ahimaz, P., Bergner, A. L., Florido, M. E., Harkavy, N., & Bhattacharyya, S. (2024). Genetic counselors’ utilization of ChatGPT in professional practice: A cross-sectional study. American Journal of Medical Genetics. Part A, 194(4), e63493. https://doi.org/10.1002/ajmg.a.63493

  19. Rezende, R. C., Menezes de Andrade, N. L., Branco Dantas, N. C., de Polli Cellin, L., Victorino Krepischi, A. C., Lerario, A. M., & de Lima Jorge, A. A. (2024). Exome Sequencing Identifies Multiple Genetic Diagnoses in Children with Syndromic Growth Disorders. The Journal of Pediatrics, 265, 113841. https://doi.org/10.1016/j.jpeds.2023.113841

  20. 2023
  21. Li, D., Wang, Q., Bayat, A., Battig, M. R., Zhou, Y., Bosch, D. G., van Haaften, G., Granger, L., Petersen, A. K., Pérez-Jurado, L. A., Aznar-Laín, G., Aneja, A., Hancarova, M., Bendova, S., Schwarz, M., Kremlíková Pourová, R., Sedlacek, Z., Keena, B. A., March, M. E., … Hakonarson, H. (2024). Spliceosome malfunction causes neurodevelopmental disorders with overlapping features. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI171235

  22. Kušíková, K., Šoltýsová, A., Ficek, A., Feichtinger, R. G., Mayr, J. A., Škopková, M., Gašperíková, D., Kolníková, M., Ornig, K., Kalev, O., Weis, S., & Weis, D. (2023). Prognostic Value of Genotype-Phenotype Correlations in X-Linked Myotubular Myopathy and the Use of the Face2Gene Application as an Effective Non-Invasive Diagnostic Tool. Genes, 14(12). https://doi.org/10.3390/genes14122174

  23. Rassmann, S., Keller, A., Skaf, K., Hustinx, A., Gausche, R., Ibarra-Arrelano, M. A., Hsieh, T.-C., Madajieu, Y. E. D., Nöthen, M. M., Pfäffle, R., Attenberger, U. I., Born, M., Mohnike, K., Krawitz, P. M., & Javanmardi, B. (2023). Deeplasia: deep learning for bone age assessment validated on skeletal dysplasias. Pediatric Radiology. https://doi.org/10.1007/s00247-023-05789-1

  24. Carrer, A., Romaniello, M. G., Calderara, M. L., Mariani, M., Biondi, A., & Selicorni, A. (2023). Application of the Face2Gene tool in an Italian dysmorphological pediatric clinic: Retrospective validation and future perspectives. American Journal of Medical Genetics. Part A, 194(3), e63459. https://doi.org/10.1002/ajmg.a.63459

  25. Krawitz, P. (2023). Auf künstliche Intelligenz gestützte Bildanalyse bei seltenen Erkrankungen mit fazialer Dysmorphie. Die Innere Medizin, 64(11), 1041–1043. https://doi.org/10.1007/s00108-023-01616-9

  26. Hsieh, T.-C., Lesmann, H., & Krawitz, P. M. (2023). Facilitating the Molecular Diagnosis of Rare Genetic Disorders Through Facial Phenotypic Scores. Current Protocols, 3(10), e906. https://doi.org/10.1002/cpz1.906

  27. Hollstein, R., Peron, A., Wendt, K. S., & Parenti, I. (2023). Editorial: Pathogenic mechanisms in neurodevelopmental disorders: advances in cellular models and multi-omics approaches. Frontiers in Cell and Developmental Biology, 11, 1296885. https://doi.org/10.3389/fcell.2023.1296885

  28. Roberto, H., Yoanna, M.-D., Heydi, M.-V., Joan, N., & Augusto, G. (2023). Face morphometric profiles of groups as early markers for certain diseases? International Journal of Oral and Craniofacial Science, 9(2), 008–015. https://doi.org/10.17352/2455-4634.000060

  29. Forwood, C., Ashton, K., Zhu, Y., Zhang, F., Dias, K.-R., Standen, K., Evans, C.-A., Carey, L., Cardamone, M., Shalhoub, C., Katf, H., Riveros, C., Hsieh, T.-C., Krawitz, P., Robinson, P. N., Dudding-Byth, T., Sadikovic, B., Pinner, J., Buckley, M. F., & Roscioli, T. (2023). Integration of EpiSign, facial phenotyping, and likelihood ratio interpretation of clinical abnormalities in the re-classification of an ARID1B missense variant. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics. https://doi.org/10.1002/ajmg.c.32056

  30. Hsieh, T.-C., & Krawitz, P. M. (2023). Computational facial analysis for rare Mendelian disorders. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, e32061. https://doi.org/10.1002/ajmg.c.32061

  31. Svensson, A. M., & Jotterand, F. (2023). Emergence of artificial intelligence in health care: a critical review. In Handbook of Critical Studies of Artificial Intelligence (pp. 783–792). Edward Elgar Publishing. https://doi.org/10.4337/9781803928562.00079

  32. Sümer, Ö., Waikel, R. L., Hanchard, S. E. L., Duong, D., Krawitz, P., Conati, C., Solomon, B. D., & André, E. (2023). Region-based Saliency Explanations on the Recognition of Facial Genetic Syndromes. https://proceedings.mlr.press/v219/sumer23a.html

  33. 2022
  34. Sunha Park, Jaewon Kim, Tae-Young Song and Dae-Hyun Jang. Case Report: The success of face analysis technology in extremely rare genetic diseases in Korea: Tatton–Brown–Rahman syndrome and Say–Barber –Biesecker–Young–Simpson variant of ohdo syndrome Frontiers in Genetics (2022) https://doi.org/10.3389/fgene.2022.903199

  35. Gholson J. Lyon, Marall Vedaie, Travis Besheim, Agnes Park, Elaine Marchi, Leah Gottlieb, Katherine Sandomirsky, Hanyin Cheng, Isabelle Preddy, Marcellus Tseng, Quan Li, Kai Wang, Maureen Gavin, Karen Amble, Ronen Marmorstein, Ellen Herr-Israel. Expanding the Phenotypic spectrum of Ogden syndrome (NAA10-related neurodevelopmental syndrome) and NAA15-related neurodevelopmental syndrome medRxiv (2022) https://doi.org/10.1101/2022.08.22.22279061

  36. Peter M. Krawitz Künstliche Intelligenz bei der Diagnose Seltener Erkrankungen: die Entwicklung der Phänotyp-Analyse Bundesgesundheitsbl (2022) https://doi.org/10.1007/s00103-022-03602-2

  37. Alexander Hustinx, Fabio Hellmann, Ömer Sümer, Behnam Javanmardi, Elisabeth André, Peter Krawitz, Tzung-Chien Hsieh. Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification Using Model Ensembles arXiv (2022) https://doi.org/10.48550/arXiv.2211.06764

  38. Alexander J M Dingemans, Max Hinne, Kim M G Truijen, Lia Goltstein, Jeroen van Reeuwijk, Nicole de Leeuw, Janneke Schuurs-Hoeijmakers, Rolph Pfundt, Illja J Diets, Joery den Hoed, Elke de Boer, Jet Coenen-van der Spek, Sandra Jansen, Bregje W van Bon, Noraly Jonis, Charlotte Ockeloen, Anneke T Vulto-van Silfhout, Tjitske Kleefstra, David A Koolen, Hilde Van Esch, Gholson J Lyon, Fowzan S Alkuraya, Anita Rauch, Ronit Marom, Diana Baralle, Pleuntje J van der Sluijs, Gijs W E Santen, R Frank Kooy, Marcel A J van Gerven, Lisenka E L M Vissers, and Bert B A de Vries. PhenoScore: AI-based phenomics to quantify rare disease and genetic variation medRxiv (2022) https://doi.org/10.1101/2022.10.24.22281480

  39. Tara N. Yankee, Andrea Wilderman, Emma Wentworth Winchester, Jennifer VanOudenhove, and Justin Cotney. Integrative analysis of transcriptomics in human craniofacial development reveals novel candidate disease genes bioRxiv (2022) https://doi.org/10.1101/2022.02.28.482338

  40. Ömer Sümer, Fabio Hellmann, Alexander Hustinx, Tzung-Chien Hsieh, Elisabeth André, Peter Krawitz. Few-Shot Meta Learning for Recognizing Facial Phenotypes of Genetic Disorders arXiv (2022) https://doi.org/10.48550/arXiv.2210.12705

  41. Fabian Brand, Aswinkumar Vijayananth, Tzung‐Chien Hsieh, Axel Schmidt, Sophia Peters, Elisabeth Mangold, Kirsten Cremer, Tim Bender, Sugirthan Sivalingam, Hela Hundertmark, Alexej Knaus, Hartmut Engels, Peter M. Krawitz, Claudia Perne. Next-generation phenotyping contributing to the identification of a 4.7 kb deletion in KANSL1 causing Koolen-de Vries syndrome Human Mutation (2022) https://doi.org/10.1002/humu.24467

  42. Andrea D'Souza, Emory Ryan, and Ellen Sidransky. Facial features of lysosomal storage disorders Expert Review of Endocrinology & Metabolism (2022) https://doi.org/10.1080/17446651.2022.2144229

  43. Nina Hallowell1, Shirlene Badger, Aurelia Sauerbrei, Christofer Nellåker and Angeliki Kerasidou. “I don’t think people are ready to trust these algorithms at face value”: trust and the use of machine learning algorithms in the diagnosis of rare disease BMC Medical Ethics (2022) https://doi.org/10.1186/s12910-022-00842-4

  44. Danielle Christine Maria van der Kaay, Anne Rochtus, Gerhard Binder, Ingo Kurth, Dirk Prawitt, Irène Netchine, Gudmundur Johannsson, Anita C S Hokken-Koelega, Miriam Elbracht and Thomas Eggermannv. Comprehensive genetic testing approaches as the basis for personalized management of growth disturbances: current status and perspectives Endocrine Connections (2022) https://doi.org/10.1530/EC-22-0277

  45. Tzung-Chien Hsieh Next-generation phenotyping for rare Mendelian disorders Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn (2022) https://nbn-resolving.org/urn:nbn:de:hbz:5-67525

  46. Maria Asif, Emrah Kaygusuz, Marwan Shinawi, Anna Nickelsen, Tzung-Chien Hsieh, Prerana Wagle, Birgit Budde, Jennifer Hochscherf, Uzma Abdullah, Stefan Höning, Christian Nienberg, Dirk Lindenblatt, Angelika A. Noegel, Janine Altmüller, Holger Thiele, Susanne Motameny, Nicole Fleischer, Idan Segal, Lynn Pais, Sigrid Tinschert, Nadra G. Samra, Juliann M. Savatt, Natasha L. Rudy, Chiara De Luca, Italian Undiagnosed Diseases Network, Paola Fortugno, Susan M. White, Peter Krawitz, Anna C. E. Hurst, Karsten Niefind, Joachim Jose, Francesco Brancati, Peter Nürnberg, Muhammad SajidHussain. De novo variants of CSNK2B cause a new intellectual disability-craniodigital syndrome by disrupting the canonical Wnt signaling pathway HGGAdvances (2022) https://doi.org/10.1016/j.xhgg.2022.100111

  47. 2021
  48. Frédéric Ebstein, Sébastien Küry, Victoria Most, Cory Rosenfelt, Marie-Pier Scott-Boyer, Geeske M van Woerden, Thomas Besnard, Jonas Johannes Papendorf, Maja Studencka-Turski, Tianyun Wang, Tzung-Chien Hsieh, Richard Golnik, Dustin Baldridge, Cara Forster, Charlotte de Konink, Selina MW Teurlings, Virginie Vignard, Richard H van Jaarsveld, Lesley Ades, Benjamin Cogné, Cyril Mignot, Wallid Deb, Marjolijn CJ Jongmans, F Sessions Cole, Marie-José H van den Boogaard, Jennifer A Wambach, Daniel J Wegner, Sandra Yang, Vickie Hannig, Jennifer A Brault, Neda Zadeh, Bruce Bennetts, Boris Keren, Anne-Claire Gélineau, Zöe Powis, Meghan Towne, Kristine Bachman, Andrea Seeley, Anita E Beck, Jennifer Morrison, Rachel Westman, Kelly Averill, Theresa Brunet, Judith Haasters, Melissa T Carter, Matthew Osmond, Patricia G Wheeler, Francesca Forzano, Shehla Mohammed, Yannis Trakadis, Andrea Accogli, Rachel Harrison, Sophie Rondeau, Geneviève Baujat, Giulia Barcia, René Günther Feichtinger, Johannes Adalbert Mayr, Martin Preisel, Frédéric Laumonnier, Alexej Knaus, Bertrand Isidor, Peter Krawitz, Uwe Völker, Elke Hammer, Arnaud Droit, Evan E Eichler, Ype Elgersma, Peter W Hildebrand, François Bolduc, Elke Krueger, Stéphane Bézieau, Care4Rare Canada Consortium. De novo variants in the PSMC3 proteasome AAA-ATPase subunit gene cause neurodevelopmental disorders associated with type I interferonopathies medRxiv (2021) https://doi.org/10.1101/2021.12.07.21266342

  49. Lily Guo, Jiyeon Park, Edward Yi, Elaine Marchi, Yana Kibalnyk, Anastassia Voronova, Tzung-Chien Hsieh, Peter M Krawitz, Gholson J Lyon. KBG Syndrome: Prospective Videoconferencing and Use of AI-driven Facial Phenotyping in 25 New Patients medRxiv (2021) https://doi.org/10.1101/2021.11.18.21266480

Konferenzen

Block5
  • Tzung Chien Hsieh's talk at the ESHG2019 in Gothenburg, Sweden

    Tzung-Chien Hsieh, A. Bar-Haim, D. Dukić, T.J. Pantel, M. Mensah, Y. Gurovich, N. Fleischer, Y. Hanani, G. Nadav, T. Kamphans, P. Krawitz. "GestaltMatcher: Identifying the second patient of its kind in the phenotype space." Talk in Bioinformatics and multiomics Session, European Human Genetics Conference, June 15-18, 2019, Gothenburg, Sweden

  • Hellen Lesmann's talk at the 31st European Dysmorphology and ERN ITHACA Meeting in 2021

  • Tzung Chien Hsieh's talk at the ESHG2020

    Tzung-Chien Hsieh, et al. “GestaltMatch: breaking the limits of rare Mendelian disorder diagnosis by matching patients with next-generation phenotyping.” Oral presentation in Novel Bioinformatics and Machine-Learning methods session, European Human Genetics Conference, June 2020, Virtual

  • Tzung Chien Hsieh's talk at the EHGC2021

    Tzung-Chien Hsieh, et al. “Removing confounders from facial representations trained on the biased patient images.” Oral presentation in Bioinformatics, machine learning and statistical learning session, European Human Genetics Conference, August 2021, Virtual

  • Tzung Chien Hsieh's talk at the EHGC2022

    Tzung-Chien Hsieh, et al. "GestaltMatcher research platform facilitates the novel gene-phenotype exploration" Oral presentation, GfH-Jahrestagung 2022 in Würzburg, Germany