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Rare genetic disorders affect more than 6.2% of the global pop-
ulation1. Because genetic disorders are rare and diverse, accu-
rate clinical diagnosis is a time-consuming and challenging 

process, often referred to as the ‘diagnostic odyssey’2, and all infor-
mative clinical features have to be taken into consideration. A large 
fraction of patients, particularly those with neurodevelopmental 
disorders, exhibit craniofacial abnormalities3. If the facial phenotype  

(‘gestalt’) is highly recognizable, such as in Down syndrome, it may 
also play an important role in establishing the diagnosis. Sometimes 
the gestalt is so characteristic or distinct that it reduces the search 
space of candidate genes or can be used to delineate new pheno-
type–gene associations4. However, the ability to recognize these 
syndromic disorders relies heavily on the clinician’s experience. 
Reaching a diagnosis is very challenging if the clinician has not 
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Many monogenic disorders cause a characteristic facial morphology. Artificial intelligence can support physicians in recogniz-
ing these patterns by associating facial phenotypes with the underlying syndrome through training on thousands of patient 
photographs. However, this ‘supervised’ approach means that diagnoses are only possible if the disorder was part of the train-
ing set. To improve recognition of ultra-rare disorders, we developed GestaltMatcher, an encoder for portraits that is based on a 
deep convolutional neural network. Photographs of 17,560 patients with 1,115 rare disorders were used to define a Clinical Face 
Phenotype Space, in which distances between cases define syndromic similarity. Here we show that patients can be matched to 
others with the same molecular diagnosis even when the disorder was not included in the training set. Together with mutation 
data, GestaltMatcher could not only accelerate the clinical diagnosis of patients with ultra-rare disorders and facial dysmor-
phism but also enable the delineation of new phenotypes.
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previously seen a patient with an ultra-rare disorder or if the patient 
presents with a new disorder, both of which are increasingly com-
mon scenarios.

With the rapid development of machine learning and computer 
vision, a considerable number of next-generation phenotyping 
tools have emerged that can analyze facial dysmorphology using 
two-dimensional portraits of patients5–13. These tools can aid in the 
diagnosis of patients with facial dysmorphism by matching their 
facial phenotype with that of known disorders. In 2014, Ferry et al. 
proposed using a Clinical Face Phenotype Space (CFPS) formed by 
facial features extracted from images to perform syndrome classi-
fication; the system in that study was trained on photos of more 
than 1,500 controls and 1,300 patients with eight different syn-
dromes5. Since then, facial recognition technologies have improved 
substantially and constitute the core of the deep-learning revolu-
tion in computer vision14,15. The current state-of-the-art framework 
for syndrome classification, DeepGestalt (Face2Gene (F2G), FDNA 
Inc., USA), has been trained on more than 20,000 patients and cur-
rently achieves high accuracy in identifying the correct syndrome 
for roughly 300 syndromes12,16. DeepGestalt has also demonstrated 
a strong ability to separate specific syndromes and subtypes, sur-
passing human experts’ performance12. Hence, pediatricians and 
geneticists increasingly use such next-generation phenotyping tools 
for differential diagnostics in patients with facial dysmorphism. 
However, most existing tools, including DeepGestalt, need to be 
trained on large numbers of photographs and are therefore lim-
ited to syndromes with images of at least seven different patients. 
The number of submissions to diagnostic databases of pathogenic 
variants, such as ClinVar17, has become a good surrogate for the 
prevalence of rare disorders. When submissions to ClinVar of dis-
ease genes with pathogenic mutations are plotted in decreasing 
order, most of the supported syndromes are on the left, indicating 
relatively high prevalence (Fig. 1). For instance, Cornelia de Lange 
syndrome (CdLS), which has been modeled by multiple tools5,12, is 
caused by mutations in NIPBL, SMC1A or HDAC8, as well as in 
other genes, and has been linked to hundreds of reported mutations. 

However, more than half of the genes in ClinVar have fewer than 
ten submissions each (Fig. 1). As a result, most phenotypes have not 
been modeled because sufficient data are lacking. Thus, the need to 
train on large numbers of photographs is a major limitation for the 
identification of ultra-rare syndromes.

A second limitation of classifiers such as DeepGestalt is that 
their end-to-end, offline-trained architecture does not support 
new syndromes without additional modifications. To model a new 
syndrome in a deep convolutional neural network (DCNN), the 
developer has to go through six separate steps (Supplementary Fig. 
1), including collecting images of the new syndrome, changing the 
classification head (which is the last layer of the DCNN), retraining 
the network and more. In addition, the model cannot be used to 
quantify similarities among undiagnosed patients, which is crucial 
in the delineation of new syndromes.

A third shortcoming of current approaches is that they are not 
able to contribute to the longstanding discussion within the nosol-
ogy of genetic diseases about distinguishability. Syndromic differ-
ences have been hard to measure objectively18, and decisions to 
‘split’ syndromes into separate entities on the basis of perceived dif-
ferences or to ‘lump’ syndromes together on the basis of similarities 
have been made subjectively. Current tools are unable to quantify 
the similarities between syndromes in a way that could shed light 
on the underlying molecular mechanisms and guide classification.

Our objective is to improve phenotypic decision support for 
rare disorders. Here we describe GestaltMatcher, an innovative 
approach that uses an image encoder to convert all features of a 
facial image into a vector of numbers. The encoder can also be 
thought of as the penultimate layer of a DCNN that was trained 
on known syndromes, such as DeepGestalt. The vectors resulting 
from the encoder are then used to build a CFPS for matching a 
patient’s photo to a gallery of portraits of solved or unsolved cases. 
The distance between cases in the CFPS quantifies the similarities 
between the faces, thereby matching patients with known syn-
dromes or identifying similarities between multiple patients with 
unknown disorders and thereby helping to define new syndromes. 
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Fig. 1 | Subsets of disorders supported by DeepGestalt and GestaltMatcher. The lower x axis shows examples of disease genes, and the upper x axis is 
the cumulative number of genes. The y axis shows the number of pathogenic submissions in ClinVar for each gene. The numbers on the curve indicate 
the number of submissions for each of the indicated genes. Most of the rare disorders that DeepGestalt supports have relatively high prevalence based 
on their ClinVar submissions, for example, CdLS is caused by a mutation in NIPBL, SMC1A or HDAC8 (yellow), among other genes. Disease genes such as 
PACS1 (gray) cause highly distinctive phenotypes but are ultra-rare, representing the limit of what current technology can achieve. The first new disease 
that was characterized by GestaltMatcher is caused by mutations in LEMD2 (red). A candidate disease gene associated with a characteristic phenotype 
that can be identified by GestaltMatcher is PSMC3.
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Because GestaltMatcher quantifies similarities between faces in 
this way, it addresses all three of the limitations described above: 
(1) it can identify ‘closest matches’ among patients with known or 
unknown disorders, regardless of prevalence; (2) it does not need 
new architecture or training to incorporate new syndromes; and 
(3) it creates a search space to explore similarity of facial gestalts 
based on mutation data, which can point to shared molecular path-
ways of phenotypically similar disorders.

Results
Overview. The feature encoder of GestaltMatcher computes a Facial 
Phenotype Descriptor (FPD) for each portrait image (Fig. 2a). Each 
FPD can be thought of as one coordinate in the CFPS (Fig. 2b). The 
distances between the FPDs in the CFPS form the basis for syndrome 
classification, delineation of new phenotypes and patient clustering. 
All benchmarking results described in this section, as well as those 
available through the web service, are based on data from F2G. The 
F2G dataset was used to construct a CFPS consisting of 26,152 images 
from 17,560 individuals who had been diagnosed with a total of 1,115 
different syndromes, each supported by at least two cases. We divided 
the dataset into two categories: the rare dataset consisting of 816 
ultra-rare and new syndromes, representing syndromes that we aim 
to identify, and the frequent set, consisting of 299 syndromes already 
identified by DeepGestalt. The latter set of known syndromes was 
also used to train the encoder. Each category was further split into a 
gallery (90% of each syndrome) and a test set (the remaining 10% of 
each syndrome) (Methods). The performance of the three use cases 
described below, that is, matching patients with diagnosed or undiag-
nosed individuals, and quantifying syndromic similarity, depends on 
the composition of the training set and the gallery.

Because F2G data cannot be shared, we also compiled the 
GestaltMatcher database (GMDB), consisting of 4,306 images from 
3,693 individuals with 257 different syndromes. This second dataset 
is based on 902 publications and additional unpublished cases for 

which we obtained consent for sharing. All findings described in 
this section that are based on the F2G data can be reproduced quali-
tatively in the GMDB data; results obtained with the GMDB data 
are included in the Supplementary Information.

Training with dysmorphic images improves the performance. To 
investigate the importance of using a syndromic features encoder 
rather than a normal facial features encoder, we compared FPDs 
that are based on the same architecture but trained on different data. 
The first encoder, which we refer to as Enc-healthy, was only trained 
on data from healthy individuals in CASIA-WebFace19. The second 
encoder, which we refer to as Enc-F2G, was first trained on the faces 
of healthy individuals and then fine-tuned by training on dysmor-
phic faces from the gallery of patients with frequent syndromes. All 
images were encoded separately for each encoder. We then evalu-
ated the performance of the encoders on test sets of syndromes from 
the frequent set and from the rare set. The performance metric was 
the percentage of test cases (with known diagnosis) for which an 
FPD with the matching disorder was within the k closest diagnoses 
in the CFPS (the top-k accuracy). The features created by Enc-F2G 
performed better in the matching process than those created with 
Enc-healthy (Table 1). The features created by Enc-F2G improved 
the accuracy of matching within the top-10 closest images from 
31.46% to 49.12% for the frequent category and from 21.77% to 
29.56% for the rare syndromes, which do not overlap with the fre-
quent syndromes. This emphasizes the importance of training the 
encoder on data from faces with dysmorphic phenotypes and not 
only on healthy faces. The larger relative improvement of 56% on 
the frequent test set versus 36% for the rare set could possibly be 
explained as Enc-F2G being better suited to encode syndromes of 
the frequent set because it was previously trained on these disor-
ders. Likewise, for some of the 816 new disorders, the characteristic 
features were not yet optimally represented by Enc-F2G because 
features of these disorders were not part of the training set.
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Fig. 2 | Concept of GestaltMatcher. a, Architecture of a DCNN consisting of an encoder and a classifier. Facial dysmorphic features of 299 frequent 
syndromes were used for supervised learning. The last fully connected layer in the feature encoder was taken as an FPD, which forms a point in the CFPS. 
b, In the CFPS, the distance between each patient’s FPD can be considered as a measure of similarity of their facial phenotypic features. The distances can 
be further used for classifying ultra-rare disorders or matching patients with new phenotypes. Take the input image shown in the figure as an example: 
the patient’s ultra-rare disease, which is caused by mutations in LEMD2, was not in the classifier, but was matched with another patient with the same 
ultra-rare disorder in the CFPS4. CONV-1, convolutional layer-1; CONV-10, convolutional layer-10; HGPS, Hutchinson–Gilford progeria syndrome; SHS, 
Schuurs-Hoeijmakers syndrome.
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The same trend of improvement by fine-tuning on a diverse but 
smaller set of syndromic photos is also seen with the public GMDB 
dataset (Enc-GMDB versus Enc-F2G in Supplementary Table 1).  
These results suggest that an encoder that is fine-tuned on as many 
syndromic faces as possible, such as DeepGestalt, is a better fit for 
the task of syndrome classification than one trained only on healthy 
faces. Moreover, for rare syndromes not previously seen by the 
encoder, DeepGestalt’s FPD provides a better generalization or clus-
tering than the FPD encoded by CASIA-WebFace.

Syndromic diversity improves matching with new phenotypes. 
Earlier definitions of the FPD were mainly based on training a net-
work with a small selection of common and highly characteristic 
syndromes5,9. In principle, we could train GestaltMatcher’s encoder 
on all 1,115 different syndromes in our dataset. However, most of 
the facial phenotypes that have recently been linked to a gene are 
either ultra-rare or less distinctive, and using a very unbalanced 
training set with many ultra-rare disorders linked to only few cases 
may add noise without substantial additional benefit. We therefore 
analyzed the influence of the number of syndromes on the encoder’s 
fine-tuning by incrementally increasing their number starting with 
the most frequent ones. Due to the imbalance in prevalence among 
the disorders added each time, the improvement could be affected 
by the additional number of training subjects. Therefore, we used 
the same number of subjects for each syndrome. In this section, the 
test set consists only of disorders from the rare set that the encoder 
has not seen. The training procedure and averaging of the readout 
are described in detail in the Methods.

When we increased the number of training syndromes, the 
accuracy increased (Fig. 3). In general, the performance was also 
higher when more individuals per syndrome were used for training. 
Particularly when more than 50 syndromes were used, the curve for 
training with 20 subjects per syndrome was above the curve for 10 
subjects per syndrome, and so on. The same trend is also shown in 
the public GMDB dataset (Supplementary Figs. 2 and 3).

Moreover, using double the number of syndromes is better than 
using double the number of subjects for most of the combinations 
(Supplementary Fig. 4), and the effect of doubling the number of 
syndromes used for training is greater when the base sample size is 
larger than 1,200 subjects (Extended Data Fig. 1 and Supplementary 
Fig. 5). Both of these findings suggest that increasing the syndromic 
diversity in the training set improves the performance for new  

disorders. However, in the real-world scenario, the numbers of sub-
jects per syndrome are not imbalanced. Therefore, we also tested 
the effect of syndromes with fewer cases and found that they con-
tributed only marginally to the performance (Supplementary Note 
and Extended Data Fig. 2). In the following section, the Enc-F2G 
encoder is based on the 299 previously described syndromes.

Comparing performance between GestaltMatcher and 
DeepGestalt. To validate the GestaltMatcher approach for the 
first-use case (matching to known syndromes), we first worked 
with the 323 images of patients with 91 syndromes from the London 
Medical Database (LMD)20 that were already used for benchmark-
ing the performance of DeepGestalt12. When using the frequent 
gallery, which contains syndromes that DeepGestalt currently sup-
ports, GestaltMatcher achieved 64.30% and 86.59% accuracy within 
the top-10 and top-30 ranks, respectively, which was lower than the 
81.28% top-10 accuracy and 88.34% top-30 accuracy achieved by 
DeepGestalt with an Enc-F2G softmax approach (Supplementary 
Tables 2 and 3). However, when we used the gallery of all 1,115 syn-
dromes for GestaltMatcher (frequent + rare), which is a search space 
that is roughly four times larger, the top-10 and top-30 dropped by 
only 2.40 percentage points and 5.17 percentage points, respectively 
(Supplementary Table 2). Moreover, we performed the same evalu-
ation on the F2G-frequent test set and the GMDB-frequent test set 
and obtained similar results. When the number of syndromes in 
the gallery was increased from 299 to 1,115, the top-10 and top-30 
also dropped slightly, by 2.27 and 3.77 percentage points, for the 
F2G-frequent test set (Table 1). The results with the GMDB-frequent 
test set also dropped only slightly while supporting more than twice 
the number of syndromes (Supplementary Table 1). These results 
indicate that the GestaltMatcher clustering approach is highly scal-
able and robust to adding new disorders, without the limitations of 
a classification approach.

Matching undiagnosed patients from unrelated families. In 
the second use case, we envision GestaltMatcher as a pheno-
typic complement to GeneMatcher21. To prove that we can match 
patients from unrelated families who have the same disease by using 
only their facial photos, we selected syndromes from 15 recent 
GeneMatcher publications with titles containing the phrase ‘facial 
dysmorphism’4,22–35. In contrast to the benchmarking of the previous 
section, the gallery now consists of individuals with rare syndromes 

Table 1 | Performance comparison between classification and clustering with different encoders on sets of known disorders

Test set Model images Supported 
syndromes

Null top-1 
accuracy

Top-1 Top-5 Top-10 Top-30

Gallery Test

F2G-frequent Enc-F2G (softmax) – 2,669 299 0.33% 35.94% 52.45% 63.91% 78.13%

F2G-frequent Enc-F2G 19,950 2,669 299 0.33% 21.06% 39.62% 49.12% 67.98%

F2G-frequent Enc-healthy 19,950 2,669 299 0.33% 10.69% 23.69% 31.46% 50.80%

F2G-rare Enc-F2G 2,348.8 1,183.3 816 0.12% 13.66% 23.62% 29.56% 40.94%

F2G-rare Enc-healthy 2,348.8 1,183.3 816 0.12% 9.46% 16.87% 21.77% 31.77%

F2G-frequent Enc-F2G 22,298a 2,669 1,115c 0.09% 20.15% 37.81% 46.85% 64.21%

F2G-frequent Enc-healthy 22,298a 2,669 1,115c 0. 09% 9.70% 22.51% 29.80% 48.24%

F2G-rare Enc-F2G 22,298.8b 1,183.3 1,115c 0. 09% 7.07% 14.19% 17.67% 24.41%

F2G-rare Enc-healthy 22,298.8b 1,183.3 1,115c 0. 09% 4.02% 8.84% 11.73% 16.61%

The DCNNs of Enc-F2G (softmax), Enc-F2G and Enc-healthy have the same architecture. Enc-healthy was trained on CASIA-WebFace. Training of Enc-F2G (softmax) and Enc-F2G was also initiated with 
CASIA-WebFace and further fine-tuned on photos of patients in the F2G-frequent set. The Enc-F2G (softmax) model is the same as Enc-F2G, but using the softmax values of the layer instead of cosine 
distances between the FPDs in the CFPS. For the top-1 to top-30 columns, the best performance in each set is boldfaced. The numbers of images and syndromes in the rare set are averaged over ten splits. 
Enc-F2G outperformed Enc-healthy on both types of syndromes, showing the importance of fine-tuning on patient photos for learning facial dysmorphic features. The top-10 accuracy of Enc-F2G only drops 
by 2.27 percentage points (from 49.12% to 46.85%) after increasing the number of cases in the gallery and almost quadrupling the number of supported syndromes from 299 to 1,115. a Number of images in 
the frequent gallery + rare gallery. b Average of ten splits in the frequent gallery + rare gallery. c Number of syndromes in the frequent gallery + rare gallery.
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to simulate undiagnosed cases and, as a consequence, ranks refer to 
individuals and not disorders. For the evaluation, we still have to 
reveal in the end whether or not an individual from the gallery is a 
match for a test case, and nonmatching cases can harm the perfor-
mance more when matching to individuals rather than disorders. 
For instance, if the first matching individual is at rank 30, but the 
29 nonmatching individuals with higher similarity to the test case 
together have only four nonmatching disorders, then this match 
would contribute to the top-5 accuracy in matching on disorders, 
as in the previous section, but to the top-30 accuracy in matching to 
individuals, as in this section. Only the top-1 accuracy remains the 
same in both benchmarks.

In this scenario, we matched 30 of 91 subjects and connected 
26 of 79 families when using the top-10 criterion (Table 2, Fig. 4 
and Supplementary Fig. 6). When using the top-30 rank, 48 of 
91 subjects were matched, and 40 of 79 families were connected. 
Enc-healthy, which is trained only with healthy individuals, matched 
only 40 out of 91 subjects and connected 34 out of 79 families using 
the top-30 rank (Supplementary Table 4). Hence, using the encoder 
trained with facial dysmorphic individuals improves the matching 
considerably.

As an example, in a study of TMEM94 (ref. 33), eight of the ten 
photos in six different families were matched, and five of six families 
were connected within the top-10 rank. When the three test images 
in family 2 (F-2-5, F-2-7, F-2-9) were tested, the other five families 
were among those in the top-30 rank (Fig. 4). The youngest brother, 
F-2-5, matched families 1, 3, 5 and 6, and one sister, F-2-7, matched 
families 1, 4 and 6. Another sister, F-2-9, matched families 1, 4, 5 and 
6. The six families were recruited at five different institutes in India, 
Qatar, the United States (National Institutes of Health Undiagnosed 
Diseases Network) and Switzerland, indicating that GestaltMatcher 
can also connect patients of different ancestries. However, a more 
systematic analysis of pairwise distances still revealed consider-
ably smaller distances between subjects with de novo mutations 

and their affected family members than between these subjects and 
unrelated individuals (Extended Data Fig. 3). This reflects simi-
larities in the nonclinical features of the face, which is also higher 
within the same ancestry group and is a known confounding factor 
for the GestaltMatcher approach. However, it is a bias that can be 
attenuated36, and will also diminish over time when more diverse 
training data become available37.

GestaltMatcher and human experts agree on distinctive-
ness. We hypothesized that some of the ultra-rare disorders 
that were linked to their disease-causing genes early on, such as 
Schuurs-Hoeijmakers syndrome in 2012 (ref. 38), have particu-
larly distinctive facial phenotypes. To systematically analyze the 
dependence of disease-gene discovery on the distinctiveness of a 
facial gestalt, we asked three expert dysmorphologists (S. Moosa, 
N.E. and K.W.G.) to grade 299 syndromes on a scale from 1 to 3. 
The more easily they could distinguish the diseases, and the more 
characteristic of the disease they deemed the facial features, the 
higher the score. All three dysmorphologists agreed on the same 
score for 195 of 299 syndromes, yielding a concordance of 65.2%. 
We then selected 50 syndromes as a test set and trained the model 
with the remaining 249 syndromes. We analyzed the correlation of 
the mean of the distinctiveness score from human experts with the 
top-10 accuracy that GestaltMatcher achieves for these syndromes 
without having been trained on them (Fig. 5a and Supplementary 
Table 5). The Spearman’s rank correlation coefficient was 0.400 
(P = 0.004), indicating a clear positive correlation between dis-
tinctiveness score and top-10 accuracy. Syndromes with a higher 
average score tended to perform better, with Schuurs-Hoeijmakers 
syndrome being among the best-performing syndromes in 
GestaltMatcher. The analysis on 20 selected syndromes from the 
GMDB dataset also showed a positive correlation between dis-
tinctiveness score and top-5 accuracy (Supplementary Fig. 7 and 
Supplementary Table 6).
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random predictions) is 1.2% (10 of 816).
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The correlation for GestaltMatcher accuracy and disease preva-
lence was not significant (P = 0.130; Fig. 5b). This also means that 
ultra-rare disorders share a similar distribution of distinctiveness 
with more common ones, which is important for estimates about 
the performance of GestaltMatcher on new phenotypes in the  
real world.

Characterization of phenotypes in the CFPS. When syndromol-
ogists cannot find a molecular cause for a patient’s phenotype in 
diagnostic-grade genes after extensive work-up in the laboratory, 
it becomes a research case, and they may compare the patient’s 
condition to known disorders. For example, a potentially new phe-
notype could be described as ‘syndrome XY-like’ to build a case 
group for further molecular analysis through genome sequencing. 
In GestaltMatcher, this is the third use case, and such comparisons 
can be supported by cluster analysis in the CFPS with the cosine 
distance as a similarity metric (Supplementary Table 7).

If a new disease gene has been identified and the similarities 
of the patients to known phenotypes outweigh the differences, 
Online Mendelian Inheritance in Man (OMIM) groups them into 
a phenotypic series. On the gene or protein level, such phenotypic 
series often correspond to molecular-pathway diseases, such as 
GPI-anchor deficiencies for hyperphosphatasia with mental retar-
dation syndrome or cohesinopathies for CdLS. For our cluster anal-
ysis, we sampled individuals in our database with subtypes of four 
large phenotypic series and found high intersyndrome separability 
in addition to considerable intrasyndrome substructure in Noonan 
syndrome, CdLS, Kabuki syndrome and mucopolysaccharidosis. A 
t-distributed stochastic neighbor embedding (t-SNE)39 projection of 
the FPDs into two dimensions yielded the best visualization results 
(Extended Data Fig. 4). Although any projection into a smaller 
dimensionality might cause a loss of information, the clusters are 
still clearly visible for the 743 individuals sampled from these four 

phenotypic series. This observation provides further evidence that 
characteristic phenotypic features are encoded in the FPDs.

To demonstrate the separability of syndromes with facial dys-
morphism, we also used t-SNE to project 4,353 images of the ten 
syndromes from the frequent set with the largest number of subjects 
and 872 images of ten nondistinct syndromes (syndromes without 
facial dysmorphism) into two-dimensional space. In addition, we 
calculated the Silhouette index40 for both of these datasets. The FPDs 
of the frequent syndromes showed ten clear clusters of subjects, but 
the t-SNE projection of subjects with nondistinct syndromes created 
no clear clusters (Extended Data Fig. 5). Moreover, the Silhouette 
index of the frequent syndromes (0.11) was higher than that of the 
nondistinct syndromes (−0.005); the negative Silhouette index indi-
cates poor separation of the nondistinct syndromes.

GestaltMatcher as a tool for clinician scientists. The transition of 
a research case to a diagnostic case is best described by the pro-
cess of matching undiagnosed and unrelated patients in the CFPS 
who share a molecular abnormality until statistical significance is 
reached. We illustrate this process for the new disease gene PSMC3 
in a demonstration on the GestaltMatcher web service (Extended 
Data Fig. 6, www.gestaltmatcher.org). Ebstein et al.41 report 22 
patients with a neurodevelopmental disorder of heterogeneous dys-
morphism that is caused by de novo missense mutations in PSMC3, 
which encodes a proteasome 26S subunit. Although not all PSMC3 
patients have the same facial phenotype, the proximity of two unre-
lated patients in the CFPS who share the same de novo PSMC3 
mutation is exceptional. Their distance is comparable to the pairwise 
distances of patients with the recurring missense mutation R203W 
in PACS1, which is the only known cause of Schuurs-Hoeijmakers 
syndrome. On the one hand, the high distinctiveness of these two 
PSMC3 cases with the same mutation allows direct matching by 
phenotype. On the other hand, the pairwise similarities of 12 out of 

Table 2 | Matching of new phenotypes on a GeneMatcher validation set

Gene Total families (subjects) Connected families (subjects)a

Top-10 Top-30

BPTF (ref. 22) 6 (6) 0 (0) 2 (2)

CCDC47 (ref. 23) 4 (4) 0 (0) 0 (0)

CHAMP1 (ref. 24) 4 (4) 2 (2) 4 (4)

CHD4 (ref. 25) 3 (3) 0 (0) 0 (0)

DDX6 (ref. 26) 4 (4) 4 (4) 4 (4)

EBF3 (ref. 27) 6 (7) 0 (0) 0 (0)

FBXO11 (ref. 28) 17 (17) 5 (5) 9 (9)

HNRNPK (ref. 29) 3 (3) 3 (3) 3 (3)

KDM3B (ref. 30) 9 (9) 0 (0) 2 (3)

LEMD2 (ref. 4) 2 (2) 2 (2) 2 (2)

OTUD6B (ref. 31) 4 (9) 3 (4) 3 (6)

PACS2 (ref. 32) 6 (6) 0 (0) 2 (2)

TMEM94 (ref. 33) 6 (10) 5 (8) 6 (10)

WDR37 (ref. 34) 4 (4) 2 (2) 3 (3)

ZNF148 (ref. 35) 3 (3) 0 (0) 0 (0)

Total 79 (91) 26 (30) 40 (48)

Average – 32.91% (32.97%) 50.63% (52.75%)

In the discovery mode for new phenotypes (second use case), all cases in the gallery are without diagnosis. For the performance readout, only the correct disease gene of a match is revealed. As an 
example, for individuals of the TMEM94 study (shown in bold in the table), eight out of ten subjects had an image from another family within the top-10 rank, and five of the six families had at least one 
subject from another family in their top-10 rank. All subjects and families matched within the top-30. This table is based on the ranks from the similarity matrices in Fig. 4 and Supplementary Fig. 6. The 

accuracy of connected subjects corresponds to the accuracy of using Enc-F2G on the F2G-rare test set (shown in Table 1), but in discovery mode in a gallery of almost the same size as the F2G-rare gallery 
set. a Number of families (subjects) matched by a photo from another family in the top-10 or top-30 rank.
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22 patients in the CFPS for which portraits were available also hint 
that the protein domains have more than one function. The previ-
ously described scalability of GestaltMatcher makes an exploration 
of such similarities in the CFPS possible for any number of cases as 
soon as they have been added to the gallery of undiagnosed patients.

Discussion
GestaltMatcher’s ability to match previously unseen syndromes, 
that is, those for which no patient is included in the training set, 
distinguishes it from other approaches. Matching of unseen syn-
dromes is not only of importance for identifying ultra-rare dis-
orders but can also be useful for the discovery of new diseases.  
Thus, GestaltMatcher could also speed up the process of delineating 
new disorders.

Importantly, GestaltMatcher provides the flexibility to easily 
scale up the number of supported syndromes or the number of 
unsolved cases without substantial loss in performance. The LMD 
validation analysis revealed that the use of the softmax approach, 

that is, classification based on the values of the last layer repre-
senting disorders, outperformed GestaltMatcher. However, the 
GestaltMatcher encoder, that is, clustering in the CFPS with values 
of the penultimate layer representing features, demonstrated high 
scalability by yielding similar performance when the number of sup-
ported syndromes was increased from 299 to 1,115. Furthermore, 
the distinctiveness of a syndrome correlated with the performance 
(Fig. 5a), whereas syndrome prevalence did not (Fig. 5b). Thus, 
GestaltMatcher can match a syndrome with a distinguishable facial 
gestalt even if it is of extremely low prevalence. This enables us to 
avoid the long development flow currently required to support and 
discover new syndromes (Supplementary Fig. 1). Instead, matching 
can be offered instantly for all unsolved cases with available fron-
tal images, as long as consent has been provided for inclusion in 
the tool. If the gallery is populated by cases with a disease-causing 
mutation in a diagnostic-grade gene, we consider this a diagnostic 
work-up. In contrast, if the gallery is populated by further undiag-
nosed cases, it is a use case comparable to GeneMatcher.

100
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Fig. 4 | Pairwise ranks of individuals with mutations in TMEM94. Each label consists of family numbering and subject numbering, which are the same as 
in the original publication33. For example, F-2-7 means the seventh subject in the second family. Each column is the result of testing the image indicated at 
the bottom of the column. The number in the box is the rank to the corresponding image in the gallery. The fourth column starting from the left is the result 
of testing F-2-5, and the fourth row from the bottom shows that F-1-1 has a rank of 2 for F-2-5. In the fifth to seventh rows from the bottom are the ranks 
from family 2, which is the same family that F-2-5 is from.
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GestaltMatcher’s framework also allows us to abstract the encod-
ing of a dataset away from the classification task. For example, one 
can evaluate both phenotypic series and pleiotropic genes within 
a single CFPS, or obtain the most-similar patients for each of the 
matched syndromes, with minor computational cost (that is, in 
real time). Furthermore, the GestaltMatcher framework computes 
the similarity between each of the test set images across the entire 
dataset of images. This similarity can be computed using different 
metrics, for example, cosine or Euclidean distance. The results are 
then aggregated according to the chosen configuration. For exam-
ple, image similarity can be aggregated at the patient level or the 
syndrome level. Furthermore, the dataset can be filtered according 
to different parameters (such as ancestry, disease-causing genes or 
age) to further customize the evaluation.

One of the key features of GestaltMatcher is the ability to match 
patients and quantify their syndromic similarity. Clinician scientists 
often face two different tasks in their daily practice: (1) Assessing 
whether the patient’s phenotype is specific for a known disorder. If, 
for example, a variant of unclear clinical significance is found in a 
diagnostic-grade gene, a match in GestaltMatcher would be consid-
ered as supporting evidence for the pathogenicity42,43. (2) Assessing 
whether the phenotypic similarity of an unsolved case to other indi-
viduals also lacking a diagnosis is high enough to form a case group 
that can be further analyzed. This could, for example, result in the 
identification of potentially deleterious variants in a new disease gene 
and would represent the phenotypic complement to existing match-
ing approaches on the molecular level. Several online platforms, 
such as GeneMatcher, MyGene2 (https://mygene2.org/MyGene2) 
and Matchmaker Exchange44, already allow physicians to look for 
similar patients based on sequencing information, and over the past 
few years these platforms have enabled the matching of thousands 
of patients. However, automated facial matching technology has not 
yet been included in any of these platforms, although phenotypic 
data, for example, encoded in Human Phenotype Ontology terms, 
are usually exchanged after contact has been established.

Since its first proof of concept, in which GestaltMatcher was 
used to identify two unrelated patients from different countries 
with the same new disease caused by the same de novo mutation 
in LEMD2 (ref. 4), our approach has successfully been applied to 
other ultra-rare disorders (Fig. 1). We matched 40 of 79 different 
families in 15 GeneMatcher publications by top-30 rank (Fig. 4 
and Supplementary Fig. 6), and 11 candidate genes are currently 

under evaluation. This result shows the power and potential of 
GestaltMatcher to identify new syndromes. Although the number 
of individuals and the diversity of their phenotypes will affect the 
performance, cases with a high syndromic similarity will remain 
matchable due to the high dimensionality of the CFPS.

We therefore hope that GestaltMatcher will be readily integrated 
into other matching platforms to aid in determining which pheno-
types should be grouped together into a syndrome or phenotypic 
series, as well as linking individual patients to a molecular diagnosis.
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Methods
Study approval. This study is governed by the approval of the following 
Institutional Review Boards: Charité-Universitätsmedizin Berlin, Germany 
(EA2/190/16); Universitätsklinikum Bonn (UKB), Germany (Lfd.Nr.386/17). 
The authors have obtained written informed consent from the patients or their 
guardians, including permission to publish photographs.

F2G datasets. We collected images of individuals with clinically or molecularly 
confirmed diagnoses from the F2G database (https://www.face2gene.com). 
Extracted, deidentified data were used to remove poor-quality or duplicated images 
from the dataset without viewing the photos. After removing images of insufficient 
quality, the dataset consisted of 26,152 images from 17,560 individuals with a total 
of 1,115 syndromes (Supplementary Table 8).

GestaltMatcher was designed to distinguish syndromes with different 
properties. We separated syndromes by the number of affected individuals and 
whether they had already been learned by the DeepGestalt model. Extended 
Data Fig. 7 provides an overview of how the dataset was divided. The current 
DeepGestalt approach requires at least seven subjects to learn a new syndrome. 
We first used this threshold to separate the syndromes into ‘frequent’ and ‘rare’ 
syndromes. The objective of our study was to improve phenotypic decision support 
for ‘rare disorders’. However, frequent syndromes that are not associated with facial 
dysmorphic features cannot be modeled by DeepGestalt. We therefore further 
selected 299 frequent syndromes that possess characteristic facial dysmorphism 
recognized by DeepGestalt to use as ‘frequent syndromes’. The frequent syndromes 
were used to validate syndrome prediction and the separability of subtypes of a 
phenotypic series because these syndromes are known to have facial dysmorphic 
features that are well recognized by the DeepGestalt encoder. For rare syndromes, 
we sought to demonstrate that GestaltMatcher could predict a syndrome even 
if facial images were publicly available for only a few subjects. It is noteworthy 
that, for more than half of all known disease-causing genes, fewer than ten cases 
with pathogenic variants have been submitted to ClinVar (Fig. 1). Of the 1,115 
syndromes in the entire dataset, 299 were frequent and 816 were rare. DeepGestalt 
cannot yet be applied to ‘rare’ syndromes category.

We further divided each of these two datasets into a gallery and a test set. The 
gallery is the set of subjects that we intend to match, given a subject from the test 
set. First, 90% of subjects with each frequent syndrome were used to train the 
models, and the remaining 10% of subjects were used to validate the DeepGestalt 
training; the 90% then became the frequent gallery and the 10% were assigned to 
the frequent test set. For the rare dataset, we performed ten-fold cross-validation. 
In each syndrome, 90% and 10% of subjects were assigned to the gallery and 
test set, respectively. The test sets were designed to have the same distribution of 
distinctiveness as the training sets.

Matching only within a dataset would not represent a real-world scenario. 
Therefore, the galleries of the two datasets were later combined into a unified 
gallery that was used to search for matched patients.

Please note that the threshold of seven subjects to divide the dataset into 
frequent and rare is to compare GestaltMatcher to DeepGestalt, which both use 
the same training data. We could adjust this threshold higher or even remove this 
threshold in the future.

GMDB dataset. We collected images of individuals with clinically or molecularly 
confirmed diagnoses from publications and individuals that gave appropriate 
informed consent for the purpose of this study. This dataset can be used as a 
public training and test set for benchmarking and is available at GMDB (www.
gestaltmatcher.org).

At the time of the data freeze on 9 June 2021, the dataset consisted of 4,306 
images of 3,693 individuals with a total of 257 syndromes from 902 publications 
(Supplementary Table 8). Six of the 3,693 individuals have not yet been published, 
but appropriate consent has been obtained. For a fair comparison with the F2G 
dataset, we performed the data separation in the same way. The dataset was first 
split by the same threshold (seven subjects) into frequent and rare datasets, giving 
139 syndromes in the frequent dataset and 118 syndromes in the rare set. Both 
datasets were also later separated into gallery and test sets. The data split is shown 
in Supplementary Fig. 8. Of the 3,693 individuals in GMDB, 963 are also in the 
F2G dataset. To use the GMDB rare set as the test set for both the GMDB-frequent 
set and the F2G-frequent set, we made sure that no syndrome was in both the 
GMDB rare set and the F2G-frequent set (Extended Data Fig. 8).

DeepGestalt encoder. The preprocessing pipeline of DeepGestalt includes point 
detection, facial alignment (frontalization) and facial region cropping. During 
inference, a facial region crop is forward passed through a DCNN and ultimately 
gives the final prediction of the input face image. The DeepGestalt network 
consists of ten convolutional layers (Conv) with batch normalization (BN) and 
a rectified linear activation unit (ReLU) to embed the input features. After every 
Conv-BN-ReLU layer, a max pooling layer is applied to decrease spatial size while 
increasing the semantic representation. The classifier part of the network consists 
of a fully connected linear layer with dropout (0.5). In this study, we considered 
the DeepGestalt architecture as an encoder–classification composition, pipelined 
during inference. We chose the last fully connected layer before the softmax 

classification as the facial feature representation (FPD), resulting in a vector of size 
320.

DeepGestalt was first trained on images of healthy individuals from 
CASIA-WebFace19, and later fine-tuned on a dataset with patient images (F2G 
or GMDB). The encoder without fine-tuning on patient images was called 
Enc-healthy. The encoder later trained on 299 frequent syndromes in the F2G 
dataset was named Enc-F2G. The encoder trained on 139 frequent syndromes 
in GMDB was named Enc-GMDB. In the following sections, we have several 
encoders trained on different subsets of the F2G and GMDB datasets. The 
summary of all the encoders used in this study is shown in Supplementary Table 
9. To compare GestaltMatcher and DeepGestalt, we employed a model that uses 
softmax for predicting syndromes, which we called ‘Enc-F2G (softmax)’. This 
model is the same as Enc-F2G; the only difference is that Enc-F2G (softmax) used 
softmax in the last layer for prediction, as in DeepGestalt, and Enc-F2G used the 
cosine distance of FPDs for prediction.

Our first hypothesis was that images of patients with the same molecularly 
diagnosed syndromes or within the same phenotypic series, and who also share 
similar facial phenotypes, can be encoded into similar feature vectors under some 
set of metrics. Moreover, we hypothesized that DeepGestalt’s specific design choice 
of using a predefined, offline-trained, linear classifier could be replaced by other 
classification ‘heads’, for example, k-nearest neighbors using cosine distance, which 
we used for GestaltMatcher.

Descriptor projection: CFPS. Each image was encoded by the DeepGestalt 
encoder, resulting in a 320-dimensional FPD. These FPDs were further used to 
form a 320-dimensional space called the CFPS, with each FPD a point located 
in the CFPS, as shown in Fig. 2. The similarity between two images is quantified 
by the cosine distance between them in the CFPS. The smaller the distance, the 
greater the similarity between the two images. Therefore, clusters of subjects in the 
CFPS can represent patients with the same syndrome, similarities among different 
disorders or the substructure under a phenotypic series.

Evaluation. To evaluate GestaltMatcher, we took the images in the test set as 
input and positioned them in the CFPS defined by the images of the gallery. We 
calculated the cosine distance between each of the test set images (for which 
the diagnoses were known in this proof-of-concept study) and all of the gallery 
images. Then, for each test image, if an image from another individual with the 
same disorder in the gallery was among the top-k-nearest neighbors, we called 
it a top-k match. We then benchmarked the performance by averaging the top-k 
accuracy (percentage of test images with correct matches within the top k) of 
each syndrome to avoid biasing predictions toward the major class. We further 
compared the accuracy of each syndrome in the frequent and rare syndrome 
subsets to investigate whether GestaltMatcher can extend DeepGestalt to support 
more syndromes. To compare its performance on predicting syndromes with that 
of DeepGestalt, we first performed image aggregation on the syndrome level before 
calculating top-k accuracy, so that only the nearest image of each syndrome was 
taken into account.

LMD validation analysis. We compiled 323 images of patients diagnosed with 
91 frequent syndromes from the LMD publication test set12,20 and used this as the 
validation set for frequent syndromes. We first evaluated the validation set using 
softmax, which is a DeepGestalt method. To compare the performance with that of 
GestaltMatcher, we evaluated the performance of GestaltMatcher on two different 
galleries: a gallery of frequent syndromes consisting of 19,950 images of patients 
with 299 syndromes, and a unified gallery consisting of 22,298 images of patients 
with 1,115 syndromes. We then reported the top-k accuracy and compared the 
results of these three settings (DeepGestalt with softmax, GestaltMatcher with the 
frequent gallery and GestaltMatcher with the unified gallery).

Rare syndromes analysis. To understand the potential for matching rare syndromes, 
we trained an encoder, denoted Enc-F2G-rare, on 467 out of 816 rare syndromes with 
more than two and fewer than seven subjects. Ninety percent of the subjects were 
used to train Enc-F2G-rare and were later assigned to the gallery. The remaining 
10% of subjects were assigned to the test set. We then compared the performance of 
Enc-F2G-rare and Enc-F2G using both cosine distance and the softmax classifier.

Matching undiagnosed patients from unrelated families. We selected 15 articles 
published from 2015 to 2019 in which GeneMatcher was used to establish an 
association between a gene and a new phenotype with facial dysmorphism in 
patients from unrelated families. In total, these studies contained 108 photos 
of 91 subjects from 79 families. The details are shown in Table 2. The 15 genes 
were not among the F2G-frequent syndromes, so we can consider them each as 
a new phenotype to the model. We performed leave-one-out cross-validation on 
this dataset; that is, we kept one photo as the test set, and we assigned the rest 
of the photos to a gallery of 3,533 photos with 816 rare syndromes to simulate 
the distribution of patients with unknown diagnosis. We then evaluated the 
performance by top-1 to top-30 rank. If a photo of another subject with the same 
disease-causing gene from an unrelated family was among the top-k rank, we 
called it a match.

NATuRE GENETiCS | www.nature.com/naturegenetics

Content courtesy of Springer Nature, terms of use apply. Rights reserved



Technical RepoRTNATurE GENETICS

Moreover, we used top-k rank to measure how many unrelated families were 
connected. If one unrelated family was among the test photo’s top-k rank, the 
families were considered to be connected at that rank. How many families were 
matched to at least one unrelated family was also represented. When using the 
GeneMatcher data, we did not perform syndrome aggregation because aggregation 
cannot be performed if the syndrome is not known. Instead, we matched patients 
rather than predicting disorders.

Syndrome facial distinctiveness score. To evaluate the importance of the facial 
gestalt for clinical diagnosis of the patient, we asked three dysmorphologists 
(coauthors S. Moosa, N.E. and K.W.G.) to score the usefulness of each syndrome’s 
facial gestalt for establishing a diagnosis. Three levels were established:

 1. Facial gestalt can be supportive in establishing the clinical diagnosis.
 2. Facial gestalt is important in establishing the clinical diagnosis, but diagnosis 

cannot be made without additional clinical features.
 3. Facial gestalt is a cardinal symptom, and a visual or clinical diagnosis is pos-

sible from the facial phenotype alone.

We then averaged the grades from the three dysmorphologists for each 
syndrome.

Syndrome prevalence. The prevalence of each syndrome was collected from 
Orphanet (www.orpha.net). Birth prevalence was used when the actual prevalence 
was missing. If only the number of cases or families was available, we calculated 
the prevalence by summing the numbers of all cases or families and dividing by the 
global population, using 7.8 billion for the global population and a family size of 
ten for each family45.

Unseen syndromes correlation analysis. To investigate the influence of 
prevalence and distinctiveness score on the performance of new syndromes 
with facial dysmorphism, we selected 50 frequent syndromes and kept 
them out of the training set. The 50 syndromes were selected to have evenly 
distributed distinctiveness scores and prevalence distribution; the distributions 
are shown in Supplementary Fig. 9 and Supplementary Table 5. The encoder 
(Enc-F2G-exclude-50) was trained on 90% of the subjects from the other 249 
frequent syndromes. In addition, we performed random downsampling to 
remove the confounding effect of prevalence. For each iteration, we randomly 
downsampled each syndrome by assigning five subjects to the gallery and one 
subject to the test set. We then averaged the top-10 accuracy of 100 iterations.  
We calculated Spearman rank correlation coefficients for the following two  
pairs of data: between top-10 accuracy and the syndrome’s distinctiveness  
score, and between top-10 accuracy and the prevalence of syndromes collected 
from Orphanet.

The same analysis was also performed on the GMDB dataset. We selected 20 
syndromes from GMDB-frequent instead of 50 syndromes because the GMDB 
dataset is smaller than the F2G dataset, and we trained the Enc-GMDB-exclude-20 
on the remaining 119 frequent syndromes. The details of the 20 selected 
syndromes and the results are reported in Supplementary Table 6. Please note that 
we report the top-5 accuracy in the GMDB dataset instead of top-10 accuracy 
because of the smaller number of syndromes in the gallery.

Analysis of number of training syndromes and subjects. In this analysis, we 
evaluated the influence of training with additional syndromes and subjects to the 
new disorders. To avoid an imbalance among the syndromes, we used the same 
number of subjects for each syndrome. We first used four different settings for 
the number of subjects: 10, 20, 40 and 80. However, some syndromes have fewer 
subjects than the four settings used for training: for 10, 20, 40 and 80 subjects, there 
are 242, 156, 84 and 40 syndromes. We then defined the ordering of syndromes 
we added each time. To add the same syndromes for the four numbers of subjects 
each time, we first sorted syndromes with the number of subjects in descending 
order. To avoid bias due to having specific disorders added at each position, we 
then performed random sorting five times within each of the intervals [1, 40], [41, 
80], [81, 150] and [151, 240] to generate five different lists of syndromes. Thus, the 
ordering from common disorders to rare disorders was by interval rather than by 
syndrome. For example, Kabuki syndrome might be in the ninth position in the 
first list, but in the 20th position in the second list, but in each randomly sorted list 
Kabuki syndrome is in the first interval.

For each of five different lists of training syndromes, we performed the same 
training described as follows. We first trained X number of syndromes with 10 
subjects, where X = 10 to 240, incremented at an interval of 10 syndromes. As 
mentioned above, there are only 156 syndromes with more than 20 subjects. Thus, 
we trained syndromes with 20 subjects with X = 10 to 150 syndromes with the 
same increment of 10 syndromes. We performed the same process for 40 and 80 
subjects, with maximums of 80 and 40, respectively.

For each setting (number of subjects, number of syndromes), we had five 
models. We then encoded the photos separately with each model and tested them 
on the rare syndromes, which had not been seen by the models. In the end, we 
averaged the performance by the five models and report the average as the top-10 
accuracy for each setting in Fig. 3. We also used the models described above to 

encode the GMDB dataset, tested them with the GMDB rare set and report the 
results in Supplementary Fig. 2.

Because the GMDB dataset is smaller than the F2G dataset, we were not able 
to use the same number of subjects and syndromes to perform the analysis. For 
the GMDB dataset, we used 10, 20, 40 for the number of subjects, and syndrome 
intervals of [1, 10], [11, 40] and [41, 80]. The results of training on GMDB and 
testing of the GMDB rare set are shown in Supplementary Fig. 3.

We next wanted to compare two scenarios: double the number of training 
syndromes and double the number of training subjects. For example, we first 
set training on ten subjects for each of ten syndromes as the base setting, then 
compared this performance to training ten subjects for each of 20 syndromes 
(double syndromes) and training 20 subjects for each of ten syndromes (double 
subjects). The base setting had 100 subjects in total. Double syndromes and double 
subjects each had 200 subjects. This comparison allows us to understand the 
different influences of adding more syndromes and adding more subjects. The 
results are shown in Extended Data Fig. 1 and Supplementary Figs. 4 and 5.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are divided into two groups, 
nonsharable data (F2G) and sharable data (OMIM, CASIA-WebFace, GMDB). F2G 
data are from Face2Gene users and cannot be shared to protect patient privacy. 
OMIM data can be downloaded at https://omim.org/downloads. CASIA-WebFace 
and GMDB are available for noncommercial, research and educational purposes, 
and subject to controlled access. For CASIA-WebFace, user conditions are available 
at http://www.cbsr.ia.ac.cn/english/casia-webFace/casia-webfAce_AgreEmeNtS.
pdf, and requests should be sent to cbsr-request@authenmetric.com. For GMDB, 
please contact info@gestaltmatcher.org and specify which analyses you intend to 
perform. The board of GestaltMatcher will check and respond within 10 business 
days whether your request is compatible with the user conditions.

Code availability
GestaltMatcher can be subdivided into its algorithmic part, data that are required 
to train the neural network and a service that can be used for matching patients. 
The project’s landing page, www.gestaltmatcher.org, redirects to separate pages 
for each category. The web service for matching patients is based on Enc-F2G and 
is accessible for health care professionals. Parts of this service are proprietary and 
cannot be shared. However, the architecture of the CNN, as well as the code for 
evaluation, is available under a creative commons license.
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Extended Data Fig. 1 | Performance improvement of double syndromes and double subjects when using different base sample sizes with Face2Gene 
models and the Face2Gene rare set. Base sample size is calculated as the number of subjects multiplied by the number of syndromes. For example, the 
point of 40 subjects and 10 syndromes has sample size of 400, and it equals both the point of 10 subjects and 40 syndromes and the point of 20 subjects 
and 20 syndromes. ΔTop-10 accuracy is the difference of accuracy between the double syndromes or subjects and the base point, and is calculated 
based on Fig. 3. Take the two points annotated in the figure as two examples. The base point is 10 subjects and 40 syndromes with sample size 400. The 
upper indicated point is subtracting the point of 10 subjects and 40 syndromes from the point of 10 subjects and 80 syndromes in Fig. 3. The lower point 
is subtracting the point of 10 subjects and 40 syndromes from the point of 20 subjects and 40 syndromes in Fig. 3. In this graph, doubling the number 
of syndromes always improves top-10 accuracy more than doubling the number of subjects, particularly at larger base sample sizes. Thus, adding more 
syndromes is more effective than adding more subjects when enlarging the training set.
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Extended Data Fig. 2 | influence of the number of syndromes included in model training. The x-axis is the number of syndromes used in model training. 
The left y-axis shows the average top-10 accuracy for five models, and the error bars show the standard deviation over five models. The right y-axis is 
the cumulative number of subjects in the training syndromes. Each point is the average of testing five different models with different data splits. The null 
accuracy is 1.23% (10/816).
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Extended Data Fig. 3 | Comparison of the pairwise distance distribution between subjects in the same family and subjects in different families with 
the same disease-causing gene. The median distance between affected individuals from the same family is 0.522, and the median distance between 
individuals from different families is 0.823. In the box plots, the center line indicates the median values, and the bottom and top edge of the box are the 
first (25%) and the third (75%) quartiles. The whiskers extend the data points outside the 1st to the 3rd quartiles. The total number of data points (n) for 
the same family is 28, and n is 928 for the different families.
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Extended Data Fig. 4 | Hierarchical clustering of four phenotypic series using a t-SNE projection of the Facial Phenotype Descriptors. The projection 
shows clustering of FPDs for Kabuki syndrome, Noonan syndrome, mucopolysaccharidosis, and Cornelia de Lange syndrome.
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Extended Data Fig. 5 | t-SNE visualization of Facial Phenotype Descriptors of syndromes with or without facial dysmorphism. a, Ten syndromes with 
facial dysmorphism. b, Ten syndromes without facial dysmorphism.
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Extended Data Fig. 6 | Screenshot of the GestaltMatcher web service. Users can upload a patient photo to match against patients in the selected 
categories and can also visualize the clustering of patients by t-SNE. Access can be requested from www.gestaltmatcher.org. If the category DeepGestalt 
is selected, only cases with one of the frequent 299 diagnoses that DeepGestalt supports populate the gallery. If category Ultra-rare is chosen, the gallery 
is populated by cases with one of the 816 diagnoses not supported by DeepGestalt. The category of Undiagnosed Patients is suitable for a research setting 
if no match with a known disorder could be made (see, for example, PSMC3 in the online demo).
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Extended Data Fig. 7 | Overview of Face2Gene data categorization in GestaltMatcher. The data were first divided by the number of subjects in each 
syndrome. Syndromes with more than six subjects were denoted frequent syndromes, and those with six or fewer as rare syndromes. Frequent syndromes 
were also recognized by DeepGestalt. Each category was further divided into a gallery and a test set. For each frequent syndrome, 90% of subjects were 
assigned to the gallery and used for model training; the remaining 10% of subjects were kept for validating the model training and were sampled in the test 
set. We performed 10-fold cross-validation on rare syndromes. In each syndrome, 90% of subjects were assigned to the gallery and 10% of subjects were 
assigned to the test set.
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Extended Data Fig. 8 | Venn diagram of numbers of syndromes in the Face2Gene and GMDB datasets. Within each dataset, frequent syndromes are 
defined as those with seven or more subjects, and rare syndromes are defined as those with six or fewer subjects.
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